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Abstract 

The analysis of the influence of the background and 
truncation errors on the Fourier transform of the 
diffraction profile is extended with respect to the work 
that has already been done by others and a critical 
evaluation of the established Fourier methods for the 
determination of the microstructural parameters - 
average dimensions of crystallites and paracrystalline 
microdomains, lattice-distortion parameters and cumu- 
lants of the strain distribution - is presented. It is 
shown that, contrary to the case of the cosine trans- 
form and of its logarithm whose functional behaviour is 
drastically changed by the truncation error, the first 
derivative of that transform is modified by this error 
only by an oscillatory factor which multiplies the first 
term of its series expansion. The suggestion follows 
of using this derivative function in the least-squares or 
curve-fitting determination of the microstructural 
parameters. It seemed proper to check these theoretical 
results by comparing them with experimental data, 
determining by a simple curve-fitting procedure based 
on this derivative function the microstructural 
parameters of a high-density polyethylene fibre in 
directions perpendicular to the fibre axis. The 
parameters so obtained are in good agreement with the 
structural data found in the literature for the same 
material. It is concluded that the use of this derivative 
function makes possible the reliable determination of 
important features of the microstructure of materials by 
a single-line Fourier technique even in the presence of a 
large truncation error. 

1. Introduction 

The main sources of error which may limit the 
accuracy of the methods for determining the micro- 
structural parameters of polycrystalline materials by 
diffraction-profile Fourier analysis are the following: 

(i) poor knowledge of the functional relationships 
between these parameters and the Fourier coefficients; 

(ii) sampling and poor counting statistics; 

(iii) wrong evaluation of the background intensity 
and unavoidable truncation of the measurement range 
of the diffraction profile (background and truncation 
errors). 

Wilson (1942, 1962a) first gave a physical in- 
terpretation to the cosine Fourier coefficients in terms 
of particle-size* and strain contributions to the 
broadening of a diffraction profile; only recently, 
however, critical assessments of the reliability of the 
formulas expressing those contributions for both 
metallic (Mignot & Rondot, 1977) and polymeric 
(Vogel, Hasse & Hosemann, 1974) materials have been 
given, definitely reducing the seriousness of point (i) as 
a source of inaccuracy. In particular, Mignot & Rondot 
(1977) established for the second and fourth cumulants 
of the strain distribution in metals a hyperbolic 
dependence on the harmonic number, which has been 
an important controversial point in the past (see, for 
example, Gangulee, 1974). Sound criteria for solving 
the problem of the sampling error and of poor statistics 
have been given by Young, Gerdes & Wilson (1967) 
and by Wilson (1967), respectively. 

Also, the errors mentioned in point (iii) have been the 
subject of consideration and concern by some workers 
in this field (for references see later), but, in this 
author's opinion, up to now no satisfactory criteria 
have been established for eliminating the consequences 
of these errors and for reliably determining the micro- 
structural parameters of materials. For this reason, 
these errors, and especially the unavoidable truncation 
error, will be considered in this paper. 

The results of the method of Fourier analysis 
proposed by Warren & Averbach (1950, 1952) are 
particularly bound to be affected by background and 
truncation errors (Eastabrook & Wilson, 1952) and 
therefore this method should not be used in its original 
form. Indeed, Wilson (1962b) proposed the variance 
analysis of the diffraction profile as a better alternative 
to the Warren-Averbach method also because the 

* Here the word 'particle' means 'erystallite', while in the rest of 
the paper it has the more general meaning of 'coherence domain' 
and is applied to both 'crystallites' and 'paracrystalline micro- 
domains'. 
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variance method is intrinsically independent of the 
truncation error and can be used in such a way as to 
take care also of the background error (Langford & 
Wilson, 1963). 

As for the single-line Fourier methods (Smith, 1960; 
Pines & Sirenko, 1962; Mitra & Misra, 1967; 
Gangulee, 1974; Mignot & Rondot, 1977) developed 
for separating the particle-size and distortion compo- 
nents of the Fourier coefficients in the difficult cases in 
which, for various reasons, it is not possible to measure 
for every set of reflecting planes more than one 
intensity profile, background and truncation errors may 
be quite substantial. Indeed, the same reasons, e.g. the 
exceptionally broad and overlapping peaks in the 
diffraction patterns of cold-worked metals and poly- 
meric materials, which make the use of a single-line 
method necessary, are sources of large errors of that 
kind. The variance analysis can also, in principle, be 
used as a single-line method but, in practice, this gives 
inaccurate results because, in order to implement this 
possibility, one has to rely not only on the slope of the 
variance range of the integration curve but also upon its 
intercept, which is known to be heavily affected by 
systematic errors (Langford, 1968a). 

Thus, the background and truncation errors should 
be considered as important sources of serious inac- 
curacies in the determination of the microstructural 
parameters especially in cases in which the need of 
using a single-line technique is strong, i.e. for cold- 
worked metals and polymeric materials. In fact, this is 
strictly true only for the truncation error, since, as 
mentioned above, Langford & Wilson (1963) suggested 
a method based on the behaviour of the variance-range 
curve for correctly estimating the background level of 
any diffraction profile. Kulshreshtha, Dweltz & Rad- 
hakrishnan (1971) applied this method to the difficult 
case of polymeric materials. 

In spite of the above considerations, relatively few 
authors (Pines & Sirenko, 1962; Young, Gerdes & 
Wilson, 1967; Langford, 1968b; Gilli & Borea, 1970; 
Mitra & Chaudhuri, 1974) seemed to be aware of the 
problem of these experimental errors and, in any case, 
nobody has suggested valid and general procedures for 
taking care of them in the important and difficult cases 
in which single-line Fourier techniques are required. In 
these cases, indeed, the microstructural parameters are 
usually refined by a least-squares method in the 
unrealistic hypothesis of the absence of systematic 
errors and, as a consequence, the refined values are far 
from being meaningful. 

In the present paper, the analysis of the influence of 
the mentioned errors on the Fourier coefficients of the 
diffraction profiles will be extended with respect to 
work done by the cited authors and the first derivative 
of the cosine transform will be shown to be the proper 
function to be used in the least-squares determination 
of microstructural parameters. 

2. Basic definitions 

It is well known that the intensity distribution of a 
Bragg reflection can be represented by a Fourier series 

+ c o  

I(h) = E ( h )  ~ [A(n) cos(2nnh) + B(n) sin(2zmh)], 
/ / = - - c o  

where h = (2do/2) (sin 0 -  sin 0n) is continuously 
variable in reciprocal space, 0 is one half of the 
diffraction angle, 0 n is the Bragg angle, d o is the inter- 
planar spacing, 2 is the radiation wavelength, E(h) is a 
slowly-varying function of h, n is the harmonic number 
and A(n) and B(n) are the Fourier cosine and sine 
coefficients, respectively. In the following, the same 
symbols A(n) and B(n) will also be used for the 
corresponding coefficients normalized to A (0) = 1. 

For the sake of simplicity, small particle size and 
distortions will be considered as the only contributors 
to the broadening of a diffraction profile and the 
following relationship will be taken as good: 

A(n) = Ap(n) Aa(n), 

where the suffixes p and d stand for 'particle sizes' and 
'distortions', respectively. 

Mignot & Rondot (1977) found for the normalized 
particle-size and microstrain Fourier components the 
expressions 

Ap(t) = 1 -- (fi/do)t + (1/2 V/-2nrl)(fi/do)t 2 - . . . ( l a )  

and 

A d ( t ) = e x p [ - ( , / d o ) t  + ?t 3 + ...1, (lb) 

with the following meaning for the various symbols: t = 
nd o is a distance in real space normal to the given set of 
reflecting planes, fi = I /M, where M is the average 
number of lattice cells in the crystallites of the sample 
along the normal to the reflecting planes, r/ is the 
standard deviation of the particle-size distribution, (t = 
2n2[C2(t)t/dolh 2 and 7 = (~)n4lC4(t)t/d4] h4, where 
C2(t) and C4(t ) are the second and fourth cumulants of 
the strain distribution and h B = (2do/2)sin 0 B. The 
products C2(t)t and C4(t)t are. constant, since the two 
cumulants have a hyperbolic dependence on t. 

In fact, Eastabrook & Wilson (1952) found that a 
relation of type (lb) is valid only for large values of t. 
However, this limitation should not affect our reason- 
ing in the following sections since Mignot & Rbndot 
also verified the fact that the expression 

A(t) = (1 -- fit/d o) exp(-at /do) ,  (2) 

previously used by others (e.g. Warren, 1959; Smith, 
1960), is in general a reasonable approximation to 

A( t )=Ap( t )Ad( t )  

in many practical cases. 
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As mentioned in the Introduction, Vogel, Haase & 
Hosemann (1974) extended the Warren & Averbach 
method to paracrystalline materials characterized by 
lattice distortions of the second kind (Hosemann & 
Bagchi, 1962), for which the Aa(t) component in (lb) 
can be approximated by 

Aa(t ) = exp (_2n  2 g2 h2t/do), 

= - do) /d  o is the relative standard where g (,d 2 - 2  I / 2  - 

deviation of the spacing distribution of the given set of 
reflecting planes with mean interplanar spacing do 
within one paracrystalline microdomain. 

Therefore, a in (lb) can be redefined in a more 
general form as 

ct -- 2n 2 G 2 h E, 

where the constant G 2 can have one of the two 
following meanings: 

G 2 I = C2(t)t/d°' for microstrains 

t __ g2, for paracrystalline distortions. 

For convenience in the following sections, the adimen- 
sional continuous variable m -- t /d o is substituted for t; 
in the case of no truncation, m, for integral values, is 
the same as the harmonic number n, while, when the 
profile has been measured in the interval R of h, it can 
be substituted for n~/d o = n/R (~ is the Fourier period). 

3. Truncation and background errors 

When both errors are present, if R is the interval of h 
(symmetrically chosen with respect to the centroid of 
the intensity distribution), within which the diffraction 
profile has been measured, one has approximately* 

+ R/2 

Ao(n) = K f [I(h) + C + Dh] cos (27rnh/R) dh, 
--R/2 

where K is a constant and the background error is 
supposed to be a linear function of h with slope D and 
level C. More conveniently, one can write 

+R/2 

A o ( m ) = K  f [ I ( h ) + C + D h ] c o s ( 2 n m h ) d h ,  (3) 
--R/2 

where the above defined variable m has been 
substituted for the ratio n/R. Since 

+R/2 

f h cos (2zcmh) dh = 0, 
--R/2 

one has the result that, in the determination of the 
cosine transform of a symmetrically truncated profile, 
the slope of the background can be ignored and only 

* Here and in what follows, the symbols with the suffix o refer to 
observed quantities affected by the considered errors. 

the wrong evaluation of its average level is a possible 
source of error. Therefore, (3) reduces to 

+R/2 

A o ( m ) = K  f [ I ( h ) + C ] c o s ( 2 n m h ) d h  
--R/2 

+R/2 

= K f I(h) cos (2gmh) dh + KC sin (nRm)/nm. 
- R / 2  

(4) 

Since, for not too small values of M, the expression 1 - 
tim in (2) is reasonably approximated by exp(-flm),  
I(h), the Fourier transform of A(m), can be taken as 
approximately proportional to (see also Kulshreshtha, 
Dweltz & Radhakrishnan, 1971) (a + fl)/[(a + fl)2 + 
47~2h 2] and the corresponding normalized Fourier 
cosine coefficients can be approximated by the series 
expansion 

A(m) = 1 - (a+ fl)m + ½(a+ /1) 2 m 2 - . . . .  (5) 

Thus, within the limits of these approximations, the 
integral in (4) can be written 

+ R/2 

cos (2~nh) dh. 
(c~ + ~2 + 41r2 h2 

- R / 2  

By means of the substitutions y = 27rh/(a + ~ and X = 
rcR/(a + ~ ,  one obtains 

+ x  • 

Ao(m)=--~_ c o s [ ( a + ~ y m ] / ( 1  + y 2 ) d y  
L7~ 

- X  

+ KC sin (TrRm)/~rm. 

Expansion of cos[(~t + ~ym]  in a Maclaurin series, 
repetitive integration of the form fy"/(1 + y2) dy (see, 
for example, Spiegel, 1968) and normalization to 
A,,(O) = 1 give 

A°(m)=  Z° [ 1+ i=, ~ [(¢t+ fl)2i/(2i)]]FimZi] 

where 

and 

+ C O sin (nRm)/m, 

Z o = arctan X/[arctan X + CnR], 

C o = C/[arctan X + CnR], 

i 

F i = 1 + ~ ( -  1) j X (2j-1)/(2j- 1) arctan X; 
j = l  

arctan X + CnR is proportional (with constant n/K) to 
the integrated intensity of the reflection under con- 
sideration. 

Since, in most experiments, R is several times larger 
than (tt + fl)/rc, the width at half maximum of the con- 
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sidered Cauchy intensity distribution, one has usually 
X > 3 and therefore, for i > 2, 

[ X(2t-" [ [ '-~ 
>> 1 + ~ ( - 1 )  j 

1 ( 2 j -  0 a-~ctan X j=l 

X(2J-  1) [. 

(2j - 1) arctan X 

Thus, as a first approximation, one can write 

F l = (-- 1) i X (2i- ~)/(2i -- 1) arctan X 

and 

Ao(m) = Z o 1 - (a +/t) m(2/z0 Z ( -1)  (i+~)/2i 
i=1 

x (zcRm)(2i-~)/(2i- 1)(2i-- 1)! 

+ ½( a + fl)2 m2 ] + Cosin (nRm)/m, (6) 

where 1/arctan X has been approximated by 2/zc. If the 
background correction has been reliably carried out 
according to Langford & Wilson (1963), C ~_ 0 and (6) 
can be simplified to 

o O  

Ao(m ) = 1 - - (a  + fl)m(2/z0 Y. (--1)(i+x)/2i 
i=1 

x (zrRm)(2i-~)/(2i - 1)(2i-- 1)! 

+ ½(a + 13) 2 m 2, (7) 

i.e. to a form convenient for an easy comparison with 
the series expansion (5). It is immediately seen that, 
within the limits of the approximations introduced in 
the above treatment, the truncation error modifies only 
the term in m of this expansion and that the 
modification is given by the summation in (7). 

It can be easily shown by computation that this 
summation is an oscillating and rapidly increasing 
function of m. This means that Ao(m) is modified by the 
truncation error, not only by the introduction of an 
oscillatory effect but, more importantly, by a change in 
its 'average' functional behaviour. In other words, 
Ao(m) does not oscillate about the theoretical function 
A(m), but about a different function of m, for this 
reason any least-squares or regression procedure based 
on the approximate equation (5) or on (1) or (2) and 
using the experimentally determined values of Ao(m), is 
bound to give erroneous microstructural parameters. 

Moreover, consideration of (7) definitely shows that 
the common assumption that the effect on Ao(m ) by the 
truncation error is limited to relatively small values of 
m is unsound and also that the so-called 'log method', 
proposed by several authors in the past (e.g. Pines & 
Sirenko, 1962; Rothman & Cohen, 1969) and based on 
a mythical parallelism between the curves of In A (m) 
and In Ao(m ), can give only inaccurate results. 

It should be noted that no absolute novelty is 
contained in the above results and that the discussed 
features of (7) constitute nothing but a quantitative 
formulation of the well-known 'hook' effect (Warren, 
1959; Young, Gerdes & Wilson, 1967; Gilli & Borea, 

1970). However, the lack of a more quantitative 
approach has brought many workers in the past to 
follow inaccurate analytical procedures, mainly based 
on the above wrong assumption that the truncation 
effect is limited only to small values of m and therefore 
to small values of the harmonic number n. 

4. The derivative of  the cosine transform 

Within the validity of (2), the first derivative of the 
cosine transform is given by 

A'(m) -- - ( a  + f l - a f l m ) e x p ( - a m )  (8) 

or, considering only the first two terms of its series 
expansion, by 

A' ( m ) = - - ( a  + ~ + (a 2 + 2a~m. (9) 

It will be shown in this section that this derivative 
function, in view of the properties of the corresponding 
'observed' function A'(m), can be usefully considered 
for accurately determining the microstructural 
parameters by a single-line method, even in the 
presence of a large truncation error. 

From (6), one easily obtains 

A ' ( m ) = - Z  o (a+//)(2/70 Y (-1)  "+') 
t= 1 

x (zrRm)(2i-1)./(2i - 1)(2i-- 1)! 
/ 

-- (a + fl)2m[ + Co[zcRm cos 0zRm) 
J 

-- sin (rcRm)]/m 2, (10) 

where the summation has been transformed by the 
derivation operation to a well-known series expansion 
of the sine integral f,,Rm sin u/u du, whose functional a0 
behaviour is characterized by damped oscillations 
about the constant re/2. 

It may be interesting to note that, since 

lim [teRm cos (teRm) - sin (zcRm)]/m 2 = O, A'o(O) = O, m~0 

which is a consequence of the 'hook' effect at small 
values of m. 

After minimization of the background error by the 
variance method, (10)reduces to 

~ R m  

A ' ( m ) = - ( a +  fl)(2/zO f s inu/udu + (a+ fl)2m, 
0 

(11) 

where (2/zr) f~m sin u/u du, with its damped oscil- 
lations about the value 1, represents the effect of the 
truncation error on the derivative of the series 
expansion (5). Thus, the first term of this derivative is 
modified by the truncation error, while the second term 
is left unchanged. If, within the limits of validity of (2), 
one considers (9) as a better approximation to A' (m), 
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an improved expression for A'o(m) can be obtained by 
substituting a 2 + 2aft for (a +/7)2 in (11) as follows: 

n R m  

A'(m) = - ( ,  + fl)(2/z0 f sin u/u du + (a 2 + 2¢t/7) m. 
0 

(12) 
This equation states that, because of the truncation 
error, the experimentally determined function A'(m) 
'oscillates' about the theoretical curve A' (m) according 
to the behaviour of the sine integral, which is deter- 
mined only by the known value of R. The oscillation 
period of A'(m) is 2/R with the first maximum at m = 0 
[where Ao(0 ) = 0] and the first minimum at m = 1/R. 

It is evident from the above considerations that the 
possibility exists of determining meaningful micro- 
structural parameters by least-squares or curve-fitting 
procedures, based on the function A' (m) and on its 
approximate expression (9), even in the presence of 
severe truncation effects. In view of the importance of 
this possibility, in the following section the validity of 
(12) will be verified both by computing and by 
comparison with the results obtained from the ex- 
perimental data of a polymeric material. 

200 (R = 0.1621) reflections were determined by step- 
scanning in steps of 0.02 ° (20), with Ni-filtered Cu Ka 
radiation analysed through a PHA circuit. 

The (tl-a 2 doublet separation was performed accord- 
ing to Gangulee (1970) but no correction was made for 
the instrumental broadening in view of the fact that this 
effect should be much smaller than the intrinsic 
broadening of this polymeric material. For both 
reflections, the background correction was performed 
following the cited procedure by Langford & Wilson 
(1963) and using the computer program written by 
Edwards & Toman (t969). 

A Fortran program was written for Fourier trans- 
forming the diffraction profiles and calculating the 
A'o(m) values according to point (i) above. 

The first Ao(m) values for the two measured 
reflections (30 values for 110 and 20 for 200) are 
reported in Table 1. For both reflections the Bo(m) 
values of the sine transforms were found to be 
negligibly small. 

The primary intensity data are available on request 
from the author. 

5. Computing details and experimental 

The following procedure was followed: 
(i) the intensity profiles of two equatorial reflections, 

110 and 200, of a fibre of high-density polyethylene 
were measured by an X-ray diffractometer and, after 
background correction according to Langford & 
Wilson (1963), Fourier transformed by a computer 
program which also calculated the values of A'(m); 

(ii) the microstructural parameters G (in this case 
G -- g, see § 2) and M were determined by curve fitting, 
using the values of A'o(m) (the first 30 values for 110 
and the first 20 values for 200) and assuming that for 
these values a linear regression based on (9) constituted 
a valid procedure; 

(iii) equation (12) was used, with the parameters 
determined in (ii), for computing curves which are 
plotted in Fig. 1 together with the A'o(m ) values derived 
in (i) from the experimental data. 

The reason for choosing the 110 and 200 reflections 
in this testing procedure is that the microstructure of 
this material in the directions of the 110 and 200 Bragg 
vectors has been the subject of several investigations by 
Hosemann and co-workers using a multiple-order 
method and that therefore reliable values of g and M 
are available in their published works for a comparison 
(for references see Table 2). 

Polyethylene fibres were hot-drawn from a sample of 
high-density Marlex 6002 (density, p = 0.9585 Mg 
m-3). The X-ray intensities were measured by a 
General Electric XRD6 diffractometer equipped for 
fibre work. The profiles of the 110 (R = 0.1183) and 

6. Results and discussion 

The results presented in Fig. 1 (a and b) clearly show 
the validity of a method of structural analysis based on 

A'o(m) • 10 z 

-3 .• 

• ° / /  • • 

-1 \ /7 / 
/ / /  

-~L _~ ~ 

Fig. 1. Experimentally determined A'o(m ) values (dots) and A'o(m ) 
curves calculated from (12) on the basis of the parameters 
obtained by a linear-regression procedure (see text for details) for 
both the 110 (a) and the 200 (b) reflections. The straight (dashed) 
lines have been calculated from (9) on the basis of the same 
parameters. 
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Table 1. Normalized Ao(m ) values obtained by Fourier 
transformation of the 110 and 200 diffraction profiles 

of a polyethylene fibre 

The standard deviations (tr), estimated on the basis of the formula 
given by Delhez & Mittemeijer (1975), are indicated in parentheses. 

m Ao(m ) 

110 200 
I 0.995(8) 0.986 (10) 
2 0-982(8) 0.945 (10) 
3 0.960(8) 0.881 (11) 
4 0.930(8) 0.801 (11) 
5 0.896(8) 0.712 (12) 
6 0.857(8) 0.621 (13) 
7 0.815 (9) 0.534 (14) 
8 0.773 (9) 0.457 (15) 
9 0-732 (9) 0-392 (16) 

10 0.692 (9) 0.339 (17) 
11 0.656 (9) 0.297 (18) 
12 0.622 (10) 0.263 (19) 
13 0.592 (10) 0.235 (21) 
14 0.565 (10) 0.209 (22) 
15 0.540 (10) 0.184 (23) 
16 0.518 (11) 0.158 (25) 
17 0.496 (11) O. 132 (28) 
18 0.475 (11) 0.107 (31) 
19 0.454 (11) 0.083 (35) 
20 0.432 (12) 0.064 (40) 
21 0.409 (12) 
22 0.386 (12) 
23 0.362 (13) 
24 0.339 (13) 
25 0.316 (14) 
26 0.293 (14) 
27 0.272 (15) 
28 0.252 (15) 
29 0.235 (16) 
30 0.219 (16) 

the fitting of the values of A'(m) on the theoretical line 
A' (m), given by (9), and therefore on the validity of 
(12). The standard deviations for the experimental 
values have been estimated by simply doubling the ones 
obtained for the Ao(m) values according to Delhez & 
Mittemeijer (1975) (see Table 1). No single dot is 
further than 2tr from the corresponding point on the 
calculated curve. The fact that the oscillations of this 
curve are slightly smaller than the ones of the curve 
passing through the experimental dots can be mainly 
attributed to some inaccuracies in the operation of 
background correction. It is important to note that for 
both reflections the dashed lines in Fig. 1 are practically 
coincident with the straight lines (not shown in the 
figure for clarity) obtained by the regression pro- 
cedure. 

The results of the structural analysis are given in 
Table 2 where the values of M and g are reported 
together with the values of the product a* = gx/-M. 
Hosemann (1975) found that a* is a quantity whose 
value depends only on the nature and strength of the 
chemical bonding along a direction parallel to the 
considered Bragg vector. Therefore, for a given para- 

Table 2. Microstructural parameters of a polyethylene 
fibre along directions perpendicular to the reflecting 

planes (100) and (110) 

For the meaning of the symbols see text. 

Reflecting 
planes (~) 

(I00) 7.40 

(110) 4.09 

M g a* ct~ t References 

14 0.019 0.07 0.10 Hosemann& 
Wilke, 1968 

34 0.026 0.15 0.145 Hosemann, 1975 

I" The data reported in this column are average values computed 
from the microstructural parameters given in the cited references. 

crystalline material, a* is largely independent of any 
physical treatment undergone by the material and of 
particular values of the microstructural parameters. 
This means that in this kind of material M 1/2 has a 
hyperbolic dependence on g. Hosemann obtained for 
a*, in a variety of different structures, values in the 
range 0.05-0.30 and found for the reflecting planes 
(100) and (110) of polyethylene the st* values (st*) 
presented in Table 2 (see references therein). The good 
agreement with the corresponding a* values obtained 

@0 0 

A,(m) 

1. 

.5- 

1 -  

0 
0 

I I 
10 Z0 m 

Fig. 2. Experimental Ao(m) values from Table 1 (dots for the 110 
reflection and circles for the 200 reflection) and Ao(m) curves 
(full lines) calculated by (7) on the basis of the parameters 
obtained by the procedure outlined in point (ii) of § 5 and 
illustrated by Fig. 1 for both reflections. The summation in (7) 
has been truncated to its ninth term. 
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by the procedure described in {} 5 corroborates the 
above conclusions on the validity of (12) and of the 
proposed single-line method. 

Of course, a least-squares procedure based on (7) is 
a possible alternative to using (9) and (12) as suggested 
above. For substantiating this alternative, the found 
parameters were used for computing, by means of (7), 
the Ao(m ) curves presented in Fig. 2.* 

Taking into account all the approximations intro- 
duced in the derivation of (7), the effect of truncating 
the summation in it, and the standard deviations in 
Table 1, the agreement between the experimental Ao(m ) 
values and the curves computed by means of (7) must 
be considered very good. However, in the author's 
opinion the method based on the derivative function is 
to be preferred since it has the advantage of allowing 
the determination of the parameters by a simple linear 
regression procedure or even by a graphical straight- 
line fitting of the data obtained from the experiment. 

7. Conclusions 

The results discussed in the previous section indicate 
the possibility of using (9) for determining the micro- 
structure of materials by single-line Fourier analysis 
also in difficult cases of large truncation errors. 

The possibility of applying a single-line method to 
the microstructural analysis of paracrystalline 
materials is also very relevant to the solution of the 
practical problem of making easier the description of 
order in polymers in terms more meaningful than the 
misleading 'degree of crystaUinity' (Bonart, Hosemann 
& McCullough, 1963). 

While it is possible, in principle, to extend the applic- 
ability of the proposed method by deriving expressions 
for A'(m) from more general equations, like (1), thus 
determining other microstructural parameters, like r/ 
and 7, a limitation to these developments is imposed by 
the precision attainable in the intensity measurements. 
Further studies are necessary in order to ascertain the 
practical feasibility of these possibilities. 

The importance of the above conclusions can be 
evaluated considering not only the possibilities offered 
by the general applications of a single-line method to 
problems of polymer science but also the fact that this 
method allows one to apply the Fourier analysis to the 
notoriously difficult cases of ferrous materials with 
both ferritic and austenitic structures. Application work 
is in progress also in this field. 

* In fact, before performing this calculation, following the same 
reasoning which led to (12), in the third term of (7)a 2 + 2aft was 
substituted for (a + fl)2. 

The author thanks Dr P. Avena for her assistance in 
computer programming and Miss N. Dalumi for help in 
performing the diffraction experiments. 
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